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Abstract: The monitoring of air pollutant concentration within cities is crucial for environment
management and public health policies in order to promote sustainable cities. In this study, we
present an approach to estimate the concentration of particulate matter of less than 10 µm diameter
(PM10) using an empirical land use regression (LUR) model and considering different remote sensing
data as the input. The study area is Quito, the capital of Ecuador, and the data were collected between
2013 and 2017. The model predictors are the surface reflectance bands (visible and infrared) of
Landsat-7 ETM+, Landsat-8 OLI/TIRS, and Aqua-Terra/MODIS sensors and some environmental
indexes (normalized difference vegetation index—NDVI; normalized difference soil index—NDSI,
soil-adjusted vegetation index—SAVI; normalized difference water index—NDWI; and land surface
temperature (LST)). The dependent variable is PM10 ground measurements. Furthermore, this study
also aims to compare three different sources of remote sensing data (Landsat-7 ETM+, Landsat-8 OLI,
and Aqua-Terra/MODIS) to estimate the PM10 concentration, and three different predictive techniques
(stepwise regression, partial least square regression, and artificial neuronal network (ANN)) to build
the model. The models obtained are able to estimate PM10 in regions where air data acquisition is
limited or even does not exist. The best model is the one built with an ANN, where the coefficient
of determination (R2 = 0.68) is the highest and the root-mean-square error (RMSE = 6.22) is the
lowest among all the models. Thus, the selected model allows the generation of PM10 concentration
maps from public remote sensing data, constituting an alternative over other techniques to estimate
pollutants, especially when few air quality ground stations are available.
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1. Introduction

Due to some factors such as air pollutants permanency over the time, the air quality has decreased
in recent years, all over the world. One of the direct indicators of air quality is particulate matter with
an aerodynamic diameter lower than 10 µm, usually called PM10 [1]. It is well-known that PM10
has a negative environmental impact on outdoor air quality and that it that is linked to public health
problems such as cardiovascular and respiratory diseases [2,3]. Many cities around the world are
monitoring PM10 in order to prevent environmental problems. However, this monitoring process
needs to be improved in order to establish reliable environmental policies [4]. Thus, understanding the
spatial distribution of PM10 requires a scientific and accurate basis to locate the possible sources of this
pollutant in cities, in order to avoid environmental problems linked to air quality.
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The air quality monitoring network (AQMN) is a classical procedure to monitor PM10 in cities.
However, some difficulties are found, for instance, high maintenance cost by station [5], a low quantity
of stations in large cities, or non-representative spatial distribution [6]. An alternative could be
high resolution air ground measures with the implement of low-cost sensors [7,8], however, they
are an investment of the local governments, and most of the time is not possible to realize it. An
example of where there is insufficient information provided by AQMN stations and a lack of PM10
measures is in Quito, Ecuador [9–12], where there is not enough information to establish environmental
strategies. Quito, the capital of Ecuador, is a special geographic zone, considering its high elevation
altitude (2800 m) in the middle of the Andean region. Considering the difficulties of a city like Quito,
one valid alternative to complement AQMN monitoring is applying land-use regression models
(LUR) [13]. LUR models use different geographical variables as predictors (remote sensing data,
meteorological data, road density, vehicular traffic, land use, emission inventory, etc.) [13–16]. However,
oftentimes this information cannot be easily accessed. Moreover, these geographical variables are not
frequently updated by government institutions. In the case of remote sensing data, the predictors most
commonly used in LUR models to retrieve PM10 are aerosol optical depth (AOD) and normalized
difference vegetation index (NDVI) from moderate-resolution imaging spectroradiometer (MODIS)
products [17–20]. MODIS products have a low spatial resolution that limits their application in medium
or small cities [21–23], but they are an efficient alternative to retrieve pollutants in regional (large
cities/regions) or national (countries) areas. Consequently, a possible alternative to MODIS products
is Landsat data. Nowadays, the operational Landsat satellites are Landsat-7 and Landsat-8 [24,25].
Landsat data have a higher spatial resolution compared with MODIS (30 m instead of 250 m) [23].
Several strategies to retrieve AOD from Landsat data have already been established [24]. Nevertheless,
these strategies require AOD ground station data in the study area to have aerosol information in a
medium spatial resolution [25,26]. Considering this limitation, other studies suggest that the visible
bands of Landsat sensors can be used to invert PM10 [27]. The strategy proposed in this work is useful
and effective when the AOD stations are limited.

In order to construct empirical LUR models, some studies have used multiple linear regression
(MLR) [26], considering a subset of variables through the stepwise regression (STW) algorithm [28,29].
Nevertheless, the use of MLR cannot analyze the possible multicollinearity between variables, because
we have a high correlation between near bands in the spectrum [30]. Moreover, it is well-known
that multicollinearity exists between remote sensing variables [31], producing a source of error in
MLR empirical models. However, an alternative that allows the computing of more accurate models,
avoiding multicollinearity, is to use partial least square (PLS) regression [32–34] or an artificial neuronal
network (ANN) [35]. Generally, ANNs give more accurate results in comparison with traditional
linear methods, considering the complexity of modeling air pollutants. Some atmospheric studies use
a multilayer perceptron (MLP) in the context of ANN in order to obtain a predictor model [26,36].

In Alvarez-Mendoza et al. [12], only remote sensing data were considered to compute the LUR
model based in a MLR without a method to select predictors. In this work, three main objectives are
proposed: (i) Using only remote sensing data will be used to establish LUR models without any AOD
predictor; (ii) making a comparison between three different remote sensing satellite/sensors (MODIS,
Landsat-7, and Landsat-8) to retrieve long-term PM10 considering only a selection of predictors and;
(iii) comparing the accuracy of different techniques (STW, PLS, and MLP) in the generation of the
predictive models. The two last items are the new contributions of this work.

2. Materials and Methods

2.1. Study Area

The study area is the urban zone of Quito, the capital of Ecuador. Quito comprises 45 urban
parishes or parroquias, distributed between the latitudes 0◦30′ S and 0◦10′N and the longitudes 78◦10′W
and 78◦40′ W (Figure 1). The average elevation is around 2800 meters above sea level. The city is
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located in the middle of the Andean Region. The mean minimum and maximum temperatures are
approximately 9.0 ◦C and 25.4 ◦C, respectively. On the other hand, Quito is a region without four
seasons because it is in the tropical area, near to the equatorial line. This area was chosen considering
the influence of nine AQMN stations.
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2.2. PM10 Data from AQMN Stations

In order to monitor air quality in Quito, nine stations have been acquiring air pollutants since
2002 (Figure 1). Together they form the “Red Metropolitana de Monitoreo Atmosférico de Quito”
(REMMAQ) [37]. REEMAQ is the AQMN of Quito, where one of the air pollutants daily measured
is PM10. These data are public and free to download (http://www.quitoambiente.gob.ec/ambiente/

index.php/datos-horarios-historicos). The PM10 concentration is measured in micrograms per cubic
meter (µg/m3). In this study, we use three-month-averages from 2013 to 2017, matching with the dates
of the remote sensing data (time when the satellite passes over the study area). The main reasons to
use three-month-averages are the few available remote sensing data and REMMAQ stations (stations
without data in some months or with negative data values). In this study, PM10 three-month-averages
are used as the dependent variable.

2.3. Remote Sensing Data Predictors

In this study, three different types of remote sensing data were used to retrieve PM10 between
2013 and 2017: Landsat-7 ETM+, Landsat-8 OLI/TIRS and MODIS/Terra and Aqua (Table 1). The
remote sensing data are free to download from the United States Geological Survey (USGS) website
(http://earthexplorer.usgs.gov). Moreover, only images with less than 10% cloud cover were considered
in the study, because one of the main problems in these regions is the presence of a high cloud
density [38,39]. According to this limitation, just 40% of remote sensing data was considered.

http://www.quitoambiente.gob.ec/ambiente/index.php/datos-horarios-historicos
http://www.quitoambiente.gob.ec/ambiente/index.php/datos-horarios-historicos
http://earthexplorer.usgs.gov
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Table 1. Characteristics of satellites and sensors used in the study.

Satellite Sensor Overpass Time of
Satellite Spatial Resolution

Landsat-7 Enhanced Thematic Mapper Plus (ETM+) 16 days 30 m

Landsat-8 Operational Land Imager (OLI)
Thermal Infrared Sensor (TIRS) 16 days 30 m

Terra (EOS AM-1)
Aqua (EOS PM-1)

Moderate Resolution Imaging
Spectroradiometer (MODIS) MCD43A4 1 to 2 days 500 m

The predictors or independent variables (surface reflectance bands and environmental indexes)
are listed in Table 1. The selection of remote sensing predictors was related to their possible correlation
with the PM10 concentration [9,40–42]. In the case of the environmental indexes, the most popular
indexes in LUR studies to retrieve PM10 were used. They were computed as (1), (2), (3), (4), and (5) in
Table 2, respectively.

Table 2. Remote sensing predictors used to build the model for each sensor.

Predictors Landsat-7 Landsat-8 MODIS

Blue band (B)
Green band (G)

Red band (R)
Near Infrared (NIR)

Short Wave infrared (SWIR)

Landsat surface data
Level-2

Landsat surface data
Level-2

MODIS MOD09A1
MYD09A1 products

Normalized Difference
Vegetation Index (NDVI) NDVI = NIR−R

NIR+R (1)
MODIS MOD13Q1
MYD13Q1products

Normalized Difference Soil
Index (NDSI) NDSI = SWIR−NIR

SWIR+NIR (2)

Soil-Adjusted Vegetation
Index (SAVI)

SAVI = (1 + L) NIR−R
NIR+R+L (3)

where L represents a minimal change in the soil brightness with a value of 0.5 [43]

Normalized Difference
Water Index (NDWI) NDWI = G−NIR

G+NIR (4)

Land Surface Temperature
(LST)

LST = BT(
1+
(
λ∗BT
ρ

)
lnε
) − 273.15 (5)

where BT is the brightness temperature, λ is the
center wavelength (Landsat-7 = 11.45 µm,

Landsat-8 = 10.8 µm) [44], ρ is a constant and ε is the
emissivity [45,46].

MODIS MOD11A1
MYD11A1 products

2.4. LUR Models

LUR models are an alternative to predict the spatialization of air pollutants, particularly when
the number of AQMN stations is limited. They use different geographical variables such as roads,
traffic information, meteorological and remote sensing data, and other environmental variables, in
order to build a model to retrieve air pollutants. However, often several geographical variables are not
available. Thus, we should use simple alternatives, such as free remote sensing data, as variables to
approach a LUR model.

In most cases, LUR uses MLR to establish the model [47,48]. MLR allows an easy and simple model
construction. In our case, the dependent variable is the quarterly PM10 value and the independent
variables or spatial predictors are the remote sensing data in each coordinate of the AQMN station,
considering the free cloud pixel value. Equation (6) shows the original LUR model, considering all the
remote sensing predictors in MLR.

PM10 = I + aNDVI− bNDSI− cSAVI + dNDWI− eLST− f B− gG+ hR+ iNIR+ jSWIR+ kY− lS (6)
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where I is the intercept, NDVI is normalized difference vegetation index, NDSI is the normalized
difference soil index, SAVI is the soil-adjusted vegetation index, NDWI is the normalized difference
water index, LST is the land surface temperature, B is the blue band, G is the green band, R is the
red band, NIR is the near infrared band, SWIR is the shortwave infrared band, Y is the year of image
acquisition, S is the three-month-averages of image acquisition (January–March—1, April–June—2,
July–September—3, and October–November—4), a, b, . . . , l, are the coefficients in each predictor. The
other variables are described in Table 1.

Nevertheless, considering that multicollinearity exists between remote sensing variables [31],
different predictor techniques should be employed to compute the LUR model. We compare three
techniques, namely, MLR with STW, PLS, and ANN, in order to find the fittest model (Figure 2).

In the first model, we use MLR considering an STW. It contemplates different parameters in order
to identify the most adequate/influencing variables as predictors. The parameters used to subset
the variables are: (i) The residual sum of squares for each model (RSS); (ii) the adjusted regression
coefficient R2 (Adj. R2); (iii) Mallows’ Cp (CP) and; (iv) Bayesian information criterion (BIC).

The second model uses PLS with the STW criteria to select the predictors. The main challenge
when using PLS is to avoid multicollinearity, finding an alternative when we have few data and a
significant number of predictors [49]. PLS generates new latent variables or components in a lineal way.

Finally, the last model uses an ANN in an MLP, with a hidden layer and six hidden nodes to
compute the predictive model. The nodes are computed according to [50]. In this model, we use all
the predictors. This method is used when the model is complex, giving a different weight to each
predictor corresponding to its importance. Additionally, we use a non-linear activation function with
backpropagation. The training data to build the MLP consider 75% of the dataset and the remaining
25% for test. We use a backpropagation approach to train the algorithm. The R studio software was
used in this study to extract the data and to compute all the models.
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3. Results

PM10 ground measurements and remote sensing data are matched in a table with the same
date. Thus, the unique condition is to consider remote sensing data with less than 10% cloud density.
So, the three-month-averages matching tables for each sensor contain 35 observations for Landsat-7,
93 observations for Landsat-8, and 108 observations for MODIS. The main reasons to have only these
numbers of observations are the high cloud density in the study area and the incomplete/not available
air pollution data. Furthermore, the criteria to select predict variables consider five dependent variables
for Landsat-7, eight dependent variables for Landast-8, and six dependent variables for MODIS, for
each STW and PLS model, as shown in Table 3. They were obtained according to STW criteria (RSS,
Adj. R2, CP, and BIC). The variables common to all the three cases considered are blue band, near
infrared (NIR) band, and normalized difference vegetation index (NDVI).
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Table 3. Number of observations and predictors per satellite to build the LUR models.

Variable Landsat-7 Landsat-8 MODIS

No. Observations 35 93 108
No. Predictors 5 8 6

Predictors

NDVI
B
R

NIR
S

NDVI
SAVI
LST

B
G
R

NIR
Y

NDVI
B
G
R

NIR
S

The LUR models are computed considering STW and PLS regressions in a linear way and MLP
in a non-linear way. They are shown and compared in Table 4 (Equations (7)–(12)). In the case of
Landsat-7, the STW shows a coefficient of determination (R2) of 0.37, the PLS a R2 of 0.36, and, for
MLP, a R2 of 0.46. The lowest root-mean-square error (RMSE) was obtained for STW with a value of
9.47. For Landsat-8, in STW a R2 of 0.42 was obtained, and a R2 of 0.43 for PLS, and a R2 of 0.68 for
MLP (Figure 3). The lowest RMSE obtained was for MLP. Finally, for MODIS, a R2 of 0.15 for STW,
a R2 of 0.19 for PLS and a R2 of 0.25 for MLP were obtained. The lowest RMSE was for STW.

Table 4. LUR models for each sensor with different regression techniques. In the case of multilayer
perceptron (MLP), the model is not linear.

Sensor Model Equation/Method
Coefficient of

Determination
(R2)

Root-Mean-Square
Error (RMSE)

Landsat-7 ETM+

Stepwise
regression (STW)

PM10 = −26.770 +
205.289NDVI− 0.073B +

0.144R− 0.048NIR + 2.270S (7)
0.37 9.47

Partial least square
regression (PLS)

PM10 = 24.786−
54.369NDVI− 0.059B +

0.049R− 0.008NIR + 2.165S (8)
0.36 10.14

Multilayer
perceptron (MLP)

Non-linear. One hidden layer
and six hidden nodes. 0.46 12.69

Landsat-8
OLI/TIRS

STW

PM10 =
−4125.506 + 350.130NDVI −

200.334SAVI0.936LST−
0.035B− 0.036G + 0.099R−

0.013NIR + 2.061Y (9)

0.42 9.19

PLS

PM10 =
−4146.508 + 115.816NDVI −

40.465SAVI1.020LST−
0.036B− 0.038G + 0.104R−

0.016NIR + 2.073Y (10)

0.43 9.46

MLP Non-linear. One hidden layer
and six hidden nodes. 0.68 6.22

MODIS
STW

PM10 =
1.248 + 93.411NDVI +

0.056B− 0.070G + 0.056R−
0.017NIR + 3.190S (11)

0.15 12.91

PLS

PM10 =
5.661 + 79.106NDVI +

0.060B− 0.072G + 0.050R−
0.014NIR + 3.308S (12)

0.19 12.93

MLP Non-linear. One hidden layer
and six hidden nodes. 0.25 16.38
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Figure 5 shows the relative variable importance according to the assigned weights, where the red
band is the most significant in the model, while LST presented the lowest significance.
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The Landsat-8 LUR-MLP model is chosen to predict PM10, considering the highest R2 and the
lowest RMSE. In Figure 6, the quarterly maps show the PM10 spatial concentration during 2015, in a
color scale in µg/m3. The white gaps showed in the maps are clouds with a high density.
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4. Discussion

As demonstrated in this study, LUR models are an interesting alternative to model air quality,
specifically PM10 concentrations, when the in-situ air quality measures are insufficient. Usually, most
of the predictors are geographical variables (such as roads), traffic, meteorological data, and others [13].
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LUR models are usually applied in small cities or regions where AQMN stations are limited [51], and
where spatial interpolation techniques, such as ordinary kriging or inverse distance weighting, cannot
be applied, considering the low number of ground measurements available [52]. One of the main
problems with these geographic variables is the low accessibility to the data and the time of acquisition.
Sometimes, these variables are obsolete, and they are not enough to establish a possible trend.

In this study, we propose an alternative, considering only free remote sensing variables. We apply
this approach to the city of Quito, Ecuador, during the period between 2013 and 2017, in order to
compare three different satellite data. Quito is growing in new poles. When REEMAQ was established
in 2002, Quito did not have its current size and configuration. Now, REEMAQ is an obsolete air quality
network, especially in the distribution of stations, which urgently needs improvement. Air pollutant
spatial models are techniques based on interpolation or geostatistics approaches, which can be useful
if a reasonable number of stations are available with a good spatial distribution [53]. In this study, only
nine stations are available. Moreover, in some cases, the data are incomplete during some months.
Additionally, according to some authors [7,8], it is possible to have more air ground data with low-cost
sensors, however they must be implemented in the cities in order to monitor the air quality. The
alternative to improve the air quality model in Quito is to establish different spatiotemporal LUR
models, considering only remote sensing data as predictor variables. A preliminary study shows the
use of only remote sensing variables but using an MLR in order to build the model. The limitation is the
use of all remote sensing predictors without considering the collinearity [12]. In order to establish the
models, three different remote sensing data were tested (Landsat-7, Landsat-8, and MODIS) and three
techniques for modeling (STW, PLS, and MLP) were employed. The selected variables to compute
the model are the visible NIR and SWIR bands of the three sensors, different environmental indices
(NDVI, NDSI, SAVI, NDWI), and LST, computed from the data retrieved from each sensor. Most of the
studies published use aerosol optical thickness (AOT) derived from MODIS (MOD04) [54] as the input
in LUR models, however, this product has a low spatial resolution (3 × 3 km) [55]. This resolution is
not practicable when considering cities like Quito, where the maximum width is near to 10 km. On the
other hand, some MODIS products do not have a suitable quality for local studies [56]. Other studies
use Landsat-8 combined with AOT ground stations to spatially model the AOT [24]. This could be a
good alternative, however in our study area, we do not have access to this information between 2013
and 2017.

Comparing the LUR models established, we found that Landsat-8 is the most adequate sensor to
model PM10 concentration, considering the 93 records and according to a previous study [12]. MLP
is the fittest alternative to model PM10, with a R2 of 0.68 and a RMSE of 6.22. In this context, the
non-linear model (MLP) has a fitter result when compared to the linear models (STW and PLS) [26].
Therefore, the LUR-MLP model was chosen to map the spatial concentration of PM10 in Quito, between
2013 to 2017. MODIS presents the lowest R2 with a value of 0.19, considering the PLS regression. This
could be related to the lowest spatial resolution. Thus, most of the LUR models use MLR or STW.
MLR is easy to implement. However, one of the main problems could be the multicollinearity, because
MLR does not analyze the correlation between predictors [57]. On the other hand, the linear PLS helps
to avoid the multicollinearity creating new latent variables with few observations [34]. In a future
work, a possible combination between STW (in order to select the predictor variables), non-linear
PLS (in order to avoid the multicollinearity between remote sensing data), and a machine learning
technique (as ANN) can improve the LUR models [58].

In the case of the predictors, all the models present, in all the cases, the variables blue band, NIR,
and NDVI. In the case of NDVI, a possible reason is the direct influence of vegetation on the PM10
concentration and distribution [18]. On the other hand, the red band has the most importance in MLP,
because there could be a relationship between the retrieval of PM10 with the blue and red bands [27].
In most of the LUR studies, the authors use traffic, roads, meteorological, land use, population, and
other predictors, reporting values of R2 according to the reality of each local [26]. These models also
considered different time periods (monthly, quarterly, yearly). The main difference of our approach
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is the use of remote sensing data only as predictors, which can replace the necessity to have all
geographical variables. Another advantage is the data availability and continuity in order to recompute
the LUR models. One of the main limitations of our model is the high cloud density presented in the
images during all the year [38], making it complicated to use more data in order to improve the model.
However, a future work will intend to have more satellite sensors or to find new alternatives to recover
remote sensing data contaminated with clouds [39].

Figure 6 shows variations year by year according to PM10 mean concentration based on in-situ
data (REEMAQ Stations). We choose the third season to show the variation year by year (2013–2017),
because we have more remote sensing data available (without a high cloud density) during this
time-window. According to the results presented in Figure 6, an increasing of PM10 concentration
between 2013 to 2017 is notorious in the most of the urban parishes [59]. However, some areas showed
a decreasing tendency in some years. The lowest PM10 concentration was found in some peripheral
parishes during the 2014 year, because the air stations that influence these parishes (Tumbaco and
Los Chillos) had a variation in the concentrations. Thus, Tumbaco and Los Chillos stations are in the
east part of the study area and began to present the lower values in 2014 followed by 2013, according
to the in-situ measures. After 2014, the PM10 values for these stations began to increase. The main
reason could be related to the new operation of the new airport of Quito (2013), and the construction
of important road infrastructures around it (end of 2014). Another possible explication is the traffic
influence during the last years, particularly in the peripheral areas where an increase was registered
since 2015 and also the increase of the population in these areas [60]. In the northern parishes, the
stations of San Antonio P. and Carapungo are influenced by the presence of stone and sandy point
quarries [61]. The stations Centro, Belisario, and El Camal are in the city downtown, and it is the main
reason that an increase of PM10 concentration during the last years is verified in the center parishes.

According to our results, several areas presented concentrations higher than 50 µg/m3 (Figure 6),
while the World Health Organization (WHO) recommends, in its guidelines, maximum values of
20 µg/m3 as an annual mean and 50 µg/m3 as a 24-h mean [1]. However, some areas do not show
values, due to the high cloud density (white areas in Figure 6). Thus, the PM10 concentration maps
from the Landsat-8 LUR-MLP model can help local government decision makers to manage air quality
concentration and to organize new policies, specifically in the places where the highest concentrations
were identified.

5. Conclusions

In this study, three different satellite datasets were compared to retrieve models of PM10 through
LUR, in Quito, Ecuador between 2013 and 2017. Additionally, three techniques were compared to
compute the LUR models (SWR, PLS, and MLP). From this work, several conclusions could be taken:
(i) It is possible to build empirical models established using only remote sensing variables as predictors
without any other geographic variables, as traditional LUR models; (ii) in the case of Quito, the study
results show that Landsat-8 provides the most suitable satellite data to retrieve PM10, in comparison
with Landsat-7 and MODIS; (iii) MLP allows the obtainment of the most robust result in comparison
with the other modeling techniques. MLP is the fittest alternative to model PM10, with a R2 of 0.68 and
a RMSE of 6.22, and; (iv) the MLP model established helps in the spatial mapping of PM10, where in
the time window of this study, were found areas with PM10 values higher than the limit established by
WHO. Thus, these models are useful in the management of air quality in the city of Quito and can be
applied to other locations with similar characteristics.
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